Selection Consistency of Lasso-Based Procedures for Misspecified High-Dimensional Binary Model and Random Regressors

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Model Selection Consistency of Lasso On Model Selection Consistency of Lasso

Sparsity or parsimony of statistical models is crucial for their proper interpretations, as in sciences and social sciences. Model selection is a commonly used method to find such models, but usually involves a computationally heavy combinatorial search. Lasso (Tibshirani, 1996) is now being used as a computationally feasible alternative to model selection. Therefore it is important to study La...

متن کامل

Oracle Inequalities and Selection Consistency for Weighted Lasso in High-dimensional Additive Hazards Model

The additive hazards model has many applications in high-throughput genomic data analysis and clinical studies. In this article, we study the weighted Lasso estimator for the additive hazards model in sparse, high-dimensional settings where the number of time-dependent covariates is much larger than the sample size. Based on compatibility, cone invertibility factors, and restricted eigenvalues ...

متن کامل

On Model Selection Consistency of Lasso

Sparsity or parsimony of statistical models is crucial for their proper interpretations, as in sciences and social sciences. Model selection is a commonly used method to find such models, but usually involves a computationally heavy combinatorial search. Lasso (Tibshirani, 1996) is now being used as a computationally feasible alternative to model selection. Therefore it is important to study La...

متن کامل

Thresholded Lasso for High Dimensional Variable Selection

Given n noisy samples with p dimensions, where n " p, we show that the multi-step thresholding procedure based on the Lasso – we call it the Thresholded Lasso, can accurately estimate a sparse vector β ∈ R in a linear model Y = Xβ + ", where Xn×p is a design matrix normalized to have column #2-norm √ n, and " ∼ N(0,σIn). We show that under the restricted eigenvalue (RE) condition (BickelRitov-T...

متن کامل

Thresholded Lasso for high dimensional variable selection and statistical estimation ∗

Given n noisy samples with p dimensions, where n ≪ p, we show that the multi-step thresholding procedure based on the Lasso – we call it the Thresholded Lasso, can accurately estimate a sparse vector β ∈ R in a linear model Y = Xβ + ǫ, where Xn×p is a design matrix normalized to have column l2 norm √ n, and ǫ ∼ N(0, σ2In). We show that under the restricted eigenvalue (RE) condition (Bickel-Rito...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Entropy

سال: 2020

ISSN: 1099-4300

DOI: 10.3390/e22020153